HUC 120602 Middle Brazos-Bosque

HUC 6 Watershed

Climate Change Atlas Tree Species

Current and Potential Future Habitat, Capability, and Migration

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

FIA Plots sq. km sq. mi Area of Region 18,945 7,314.5 299

Species Information

The columns below provide breif summaries of the species associated with the region and described in the table on the next pages. Definitions are provided in the Excel file for this region.

Genus	Species								in Habitat Suitability	Capability	to Cope o	Migration Potential			
Ash	3				Model			Scenario	Scenario		Scenario	Scenario		SHIFT	SHIFT
Hickory	1	Abu	ndance		Reliability	Adaptability		RCP45	RCP85		RCP45	RCP85		RCP45	RCP85
Maple	1	Abundant	2	High	4	10	Increase	5	7	Very Good	1	1	Likely	0	0
Oak	7	Common	6	Medium	13	21	No Change	10	9	Good	4	7	Infill	9	8
Pine	0	Rare	23	Low	17	5	Decrease	13	12	Fair	7	5	Migrate	0	0
Other	19	Absent	5	FIA	3		New	0	0	Poor	8	7	<u>-</u>	9	8
•	31	_	36	•	37	36	Unknown	9	9	Very Poor	8	8			
							_	37	37	FIA Only	3	3			
										Unknown	6	6			
Potential Changes in Climate Variables										37	37				

Potenti	al Change	es in Clim	nate Var	riables								37
Temperatu	ıre (°F)					Precipitat	ion (in)					
	Scenario	2009	2039	2069	2099		Scenario	2009	2039	2069	2099	
Annual	CCSM45	57.6	58.7	59.9	60.4	Annual	CCSM45	25.5	26.2	26.1	25.0 ◆◆◆◆	
Average	CCSM85	57.6	59.2	60.7	62.7	Total	CCSM85	25.5	24.7	27.5	26.7	
	GFDL45	57.6	60.4	61.0	62.2		GFDL45	25.5	25.6	29.9	24.4	
	GFDL85	57.6	59.9	62.2	65.2		GFDL85	25.5	25.2	27.2	25.8	
	HAD45	57.6	59.3	61.3	62.0		HAD45	25.5	26.0	25.5	26.6 ◆◆◆◆	
	HAD85	57.6	59.6	62.6	65.0		HAD85	25.5	25.9	23.2	25.5	
Growing	CCSM45	68.9	69.9	71.0	71.6	Growing	CCSM45	12.0	13.1	11.8	11.9	
Season	CCSM85	68.9	70.6	72.0	74.4	Season	CCSM85	12.0	12.1	12.5	11.6	
May—Sep	GFDL45	68.9	72.4	72.9	75.0	May—Sep	GFDL45	12.0	12.4	14.8	11.8	
	GFDL85	68.9	72.0	74.7	78.5		GFDL85	12.0	12.5	13.2	12.4	
	HAD45	68.9	70.5	72.2	72.6 ***		HAD45	12.0	11.9	11.7	12.4 ◆◆◆◆	
	HAD85	68.9	70.9	74.2	76.3		HAD85	12.0	11.7	9.7	11.1	
Coldest	CCSM45	40.7	42.5	43.0	43.4							
Month	CCSM85	40.7	42.4	43.1	44.1	NOTE: For	the six clim	nate varial	oles, four 3	0-year pe	eriods are used to indica	te six potential
Average	GFDL45	40.7	43.4	43.4	43.5	ending in	2009 is base	ed on mod	leled obse	rvations f	rom the PRISM Climate	Group and the t
	GFDL85	40.7	41.4	42.4	42.6 ◆◆◆	obtained f	rom the NA	ASA NEX-D	CP30 data	set. Futur	e climate projections fro	om three model
	HAD45	40.7	41.1	42.6	42.9	show estir	nates of ea	ch climate	variable v	vithin the	region. The three mode	els are CCSM4, G
	HAD85	40.7	43.1	44.5	45.7						. The average value for tatitude, elevation, land-	0 1
Warmest	CCSM45	73.2	74.0	74.8	75.0				-			
Month	CCSM85	73.2	74.8	75.3	76.7	Cite as: Ive	erson, L.R.;	Prasad, A.	M.; Peters	, M.P.; M	atthews, S.N. 2019. Faci	litating Adaptiv
Average	GFDL45	73.2	77.3	77.5	79.0	Climate Cl	nange: A Sp	atially Spe	cific Synth	esis of 12	5 Species for Habitat Ch	nanges and Assis

al future trajectories. The period e three future periods were dels under two emission scenarios , GFDL CM3, and HadGEM2-ES eported, even though locations factors.

tive Forest Management under sisted Migration over the Eastern United States. Forests. 10(11): 989. https://doi.org/10.3390/f10110989.

GFDL85

HAD45

HAD85

73.2

73.2

73.2

77.5

74.9

75.5

78.8

75.8

77.2

76.0

77.9

HUC 120602 Middle Brazos-Bosque

HUC 6 Watershed

Climate Change Atlas Tree Species

USDA Forest Service Northern Research Station Landscape Change Research Group Iverson, Peters, Prasad, Matthews

Current and Potential Future Habitat, Capability, and Migration

Common Name	Scientific Name	Range	MR	%Cell	FIAsum	FIAiv ChngCl45	ChngCl85	Adap	Abund	Capabil45	Capabil85	SHIFT45	SHIFT85	SSO N
ashe juniper	Juniperus ashei	NDH	High	70.5	1502.5	37.5 No change	No change	Medium	Abundant	Good	Good			0 1
post oak	Quercus stellata	WDH	High	45.4	971.1	25.4 Sm. dec.	Sm. dec.	High	Abundant	Good	Good			1 2
cedar elm	Ulmus crassifolia	NDH	Medium	68.5	428.5	11.8 Sm. inc.	Sm. inc.	Low	Common	Fair	Fair			1 3
live oak	Quercus virginiana	NDH	High	57.1	405.2	13.7 Sm. inc.	Sm. inc.	Medium	Common	Good	Good			1 4
sugarberry	Celtis laevigata	NDH	Medium	36.5	107.1	7.3 No change	No change	Medium	Common	Fair	Fair			1 5
blackjack oak	Quercus marilandica	NSL	Medium	19	99.9	6.3 No change	No change	High	Common	Good	Good			1 6
pecan	Carya illinoinensis	NSH	Low	24.7	76.5	7.7 Sm. dec.	No change	Low	Common	Poor	Poor			0 7
cittamwood/gum bumelia	Sideroxylon lanuginosum ssp	. NSL	Low	27	70.3	4.8 Sm. inc.	Sm. inc.	High	Common	Very Good	Very Good			1 8
Texas ash	Fraxinus texensis	NDH	FIA	22.5	42.3	4.0 Unknown	Unknown	NA	Rare	FIA Only	FIA Only			0 9
bur oak	Quercus macrocarpa	NDH	Medium	5.8	41.2	15.8 Lg. dec.	Lg. dec.	High	Rare	Poor	Poor			0 10
black willow	Salix nigra	NSH	Low	3	31.3	12.2 Sm. dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor			2 11
hackberry	Celtis occidentalis	WDH	Medium	11.5	22.6	4.5 No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	2 12
American elm	Ulmus americana	WDH	Medium	14.8	15.1	2.1 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	1 13
green ash	Fraxinus pennsylvanica	WSH	Low	13.6	10.4	5.3 Sm. inc.	Sm. inc.	Medium	Rare	Fair	Fair	Infill +	Infill +	2 14
eastern redcedar	Juniperus virginiana	WDH	Medium	10.3	8.6	2.7 Sm. inc.	Lg. inc.	Medium	Rare	Fair	Good	Infill +	Infill ++	2 15
winged elm	Ulmus alata	WDL	Medium	5.4	7.4	4.1 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 16
Osage-orange	Maclura pomifera	NDH	Medium	10.6	7.1	2.6 No change	Sm. inc.	High	Rare	Fair	Good	Infill +	Infill ++	2 17
eastern cottonwood	Populus deltoides	NSH	Low	2.6	5.5	10.6 No change	No change	Medium	Rare	Poor	Poor	Infill +	Infill +	2 18
honeylocust	Gleditsia triacanthos	NSH	Low	5.6	5.0	2.5 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor	Infill +		2 19
water elm	Planera aquatica	NSL	Low	2.1	2.6	20.0 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 20
Shumard oak	Quercus shumardii	NSL	Low	5.3	2.6	0.7 Sm. dec.	Sm. dec.	High	Rare	Poor	Poor			0 21
white ash	Fraxinus americana	WDL	Medium	1.1	1.8	1.7 Sm. dec.	Sm. dec.	Low	Rare	Very Poor	Very Poor			0 22
boxelder	Acer negundo	WSH	Low	2.1	1.5	11.5 No change	No change	High	Rare	Fair	Fair	Infill +	Infill +	2 23
eastern redbud	Cercis canadensis	NSL	Low	5.2	1.3	0.8 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 24
durand oak	Quercus sinuata var. sinuata	NSL	FIA	2.5	0.9	1.4 Unknown	Unknown	Medium	Rare	FIA Only	FIA Only			0 25
black oak	Quercus velutina	WDH	High	0.5	0.8	1.6 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 26
red mulberry	Morus rubra	NSL	Low	5.6	0.7	1.6 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 27
black walnut	Juglans nigra	WDH	Low	2	0.3	1.9 Sm. dec.	Sm. dec.	Medium	Rare	Very Poor	Very Poor			0 28
slippery elm	Ulmus rubra	WSL	Low	2.1	0.2	1.5 No change	Lg. inc.	Medium	Rare	Poor	Good			0 29
wild plum	Prunus americana	NSLX	FIA	2.1	0.1	0.8 Unknown	Unknown	Medium	Rare	FIA Only	FIA Only			0 30
black locust	Robinia pseudoacacia	NDH	Low	2.1	0.0	0.3 Lg. dec.	Lg. dec.	Medium	Rare	Very Poor	Very Poor			0 31
serviceberry	Amelanchier spp.	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 32
pawpaw	Asimina triloba	NSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 33
flowering dogwood	Cornus florida	WDL	Medium	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 34
black cherry	Prunus serotina	WDL	Medium	0	0	0 Unknown	Unknown	Low	Absent	Unknown	Unknown			0 35
southern red oak	Quercus falcata	WDL	Medium	0	0	0 Unknown	Unknown	High	Modeled	Unknown	Unknown			0 36
sassafras	Sassafras albidum	WSL	Low	0	0	0 Unknown	Unknown	Medium	Absent	Unknown	Unknown			0 37

